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1 Introduction

This Algorithm Theoretical Basis Document (ATBD) describes the theoretical basis

for the algorithm used to generate the v2 fused data products for the Making Earth

Science Data Records for Use in Research Environments project (MEaSUREs ‘17:

Records of Fused and Assimilated Satellite Carbon Dioxide Observations and Fluxes

from Multiple Instruments). This ATBD is divided into three parts. In Section 2, we

describe the data sources (here the Orbiting Carbon Observatory 2 and the Green-

house Gases Observing Satellite) along with some detail on data quality filtering. In

Section 3, we present a theoretical justification for our fusion approach. Finally, in

Section 4 we review the motivation and fundamentals of our methodology (kriging)

and provide the implementation details.

2 Data Sources for Fusion

The Orbiting Carbon Observatory-2 (OCO-2) is NASA’s first Earth remote sens-

ing instrument dedicated to studying carbon dioxide’s global distribution. It was

launched on July 2, 2014, and it uses three high-resolution grating spectrometers

to acquire observations of the atmosphere in three observation modes: nadir, glint,

and target. In nadir mode, the instrument points to the local nadir to collect data

directly below the spacecraft. Nadir mode does not provide adequate signal-to-noise

ratio over the dark ocean surface, and thus over ocean OCO-2 uses glint mode. In

that mode, OCO-2 points its mirrors at bright glint spots where the solar radiation

is specularly reflected from the surface. Finally, in target mode the instruments locks

2



its view onto specific surface locations (usually a ground-based TCCON station or

observational tower) while flying overhead. OCO-2 has a repeat cycle of sixteen days

and a sampling rate of about one million observations per day, making it a high-

density and high-resolution complement to GOSAT. The CO2 concentrations in an

atmospheric column are inferred from the observed spectra through optimal estima-

tion (Crisp et al., 2010). The outputs are available as 20-dimensional CO2 profiles

and column-averaged CO2 concentrations. The latter is derived from the former us-

ing a pressure weighting function, which is a 20-dimensional vector of weights derived

from local atmospheric conditions. A pressure weighting function is convolved with

the 20-dimensional CO2 vector in a linear combination to form the column-averaged

estimate (O’Dell et al., 2012).

GOSAT is a polar-orbiting satellite dedicated to the observation of carbon dioxide

and methane, both major greenhouse gases, from space. It flies at approximately

665 kilometers (km) altitude, and it completes an orbit every 100 minutes. The

satellite returns to the same observation location every three days (Morino et al.,

2011). NASA’s Atmospheric CO2 Observations from Space (ACOS) team uses the

raw-radiance data from GOSAT to estimate the column-average CO2 mole fraction

in ppm, extending from the surface to the satellite over a base area corresponding

to the instrument’s footprint. In this article, we will be using GOSAT retrievals

that are processed by the ACOS team to yield Level 2 column-average CO2 data

(see Crisp et al., 2012, for more details), which were available to us through NASA’s

Goddard Earth Sciences Data and Information Services Center. Hereafter, we refer

to these as ACOS data. Since the ACOS product is produced at the Jet Propulsion
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Laboratory by the same team behind the OCO-2 instruments, much of the retrieval

characterization (e.g., priors, choice of pressure levels, forward models, etc.) are the

same between the two products.

2.1 Data version and quality filter

For our fusion products, we use ACOS Version 9 data, which are produced by the

Jet Propulsion Lab at NASA. These data are available at https://oco2.gesdisc.

eosdis.nasa.gov/data/GOSAT_TANSO_Level2/ACOS_L2_Lite_FP.9r/. For the OCO-

2 Level 2 data, we use the Version 10 data, which are available at https://disc.

gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_10r/summary. The User Data Guide

for ACOS V9 can be found at https://docserver.gesdisc.eosdis.nasa.gov/

public/project/OCO/ACOS_v9_DataUsersGuide.pdf, and the Data User Guide for

OCO-2 Version 10 can be found at https://docserver.gesdisc.eosdis.nasa.gov/

public/project/OCO/OCO2_OCO3_B10_DUG.pdf.

Typically, OCO-2 and ACOS L2 data vary in retrieval quality due to different

atmospheric conditions (e.g., contamination of the radiance by clouds or uncertainties

in the atmospheric aerosols). Hence, the OCO-2 team recommends that the Level

XCO2 data be filtered to eliminate potential ‘bad’ data. Here, we make use of the

‘xco2 quality flag’ quality flag from the Lite products. From the OCO-2 Level 2 Data

Quality Guide:

“xco2 quality flag [...] is simply a byte array of 0s and 1s. This filter has been

derived by comparing retrieved XCO2 for a subset of the data to various truth
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proxies, and identifying thresholds for different variables that correlate with poor

data quality. It applies a number of quality filters based on retrieved or auxiliary

variables that correlate with excessive XCO2 scatter or bias.”

For the fusion product, we filter both ACOS and OCO-2 L2 product by selecting

only values for which xco2 quality flag == 0. Both data products employ a bias

correction process, which is a post-processing algorithm that applies a small offset to

each retrieved XCO2 value to correct for instrument biases. For our fusion, we make

use of the bias-corrected XCO2 values from both ACOS and OCO-2 products.

2.2 Data fusion output modes

The OCO-2 instrument have three primary observation modes: glint, nadir, and

target. The nadir mode consists of observations where the surface solar zenith angle

is less than 85 degrees, and the glint mode consist of observation at latitudes where

the solar zenith angle of the glint spot is less than 75 degrees. Finally, target mode

consists of very localized observations are conducted over selected OCO-2 validation

sites. The three modes differ in their quality and biases. They also differ in their

spatial coverage. Nadir mode, for instance, is only collected over land, while glint

mode can collect observations over both land and ocean.

It has been shown that the bias correction process for ACOS and OCO-2 still

demonstrate residual bias, which depends on surface type, latitude, and scattering by

aerosol Wunch et al. (2017). One significant factor in determining the residual bias is

whether the surface is land or ocean. Therefore, many flux inversion studies opt for
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assimilate the XCO2 data separately for land and ocean. Consequently, we stratify

our fusion products into 4 different products, as seen in the table below: In the fusion

Table 1: Fusion output modes

Product Description
Land Only Uses only Land observations from ACOS and

OCO-2 (Land Nadir + Land Glint)
Ocean Only Uses only Ocean observations from ACOS and

OCO-2 (Ocean Glint)
Land and Ocean Uses all ACOS observations and OCO-2 Glint

and Nadir modes
Target Uses only Target observations from OCO-2

outputs, these different modes can be identified by the variable ‘source data mode’,

which is an integer ranging from 1 to 4, where ‘Land Only’ = 1, ‘Ocean Only’ = 2,

’Land and Ocean’ = 3, and ‘Target’ = 4.

3 Fusion approach

The data fusion approach based on kriging is well developed in the literature, specif-

ically for Level 3 XCO2 generation (e.g. Nguyen et al., 2012). However, this MEa-

SUREs project is specifically geared towards producing data that could be incorpo-

rated into flux inversion studies, and hence the approach needs to be modified. The

key difference between Level 3 XCO2 generation and flux inversion is the number

of variables required for the outputs. The variables that the flux modelers require

include the following: longitude, latitude, pressure levels (which varies at each foot-
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print), pressure weighting functions, XCO2, time in UTC , prior mean, and column

averaging kernel. Using the naming convention of the OCO-2 Lite files and the fusion

output files, these variables are described in the table below:

Table 2: Variables required for flux inversion

Name Dimension Description
longitude 1x1 The longitude at the center of the sound-

ing field-of-view
latitude 1x1 The latitude at the center of the sounding

field-of-view
xco2 1x1 The bias-corrected XCO2 (in units of

ppm)
time 1x1 The time of the sounding in seconds since

1970-01-01
co2 profile apriori 20x1 The prior mean profile of CO2 in ppm
xco2 averaging kernel 20x1 The normalized column averaging kernel

for the retrieved XCO2
pressure levels 20x1 The retrieval pressure level grid for each

sounding in hPa
pressure weight 20x1 The pressure weighting function on levels

used in the retrieval

The data fusion approach in Nguyen et al. (2012) provides a framework for fus-

ing scalar quantities such as XCO2 or aerosols, however, the presence of multivariate

profiles (e.g., co2 profile apriori, xco2 averaging kernel) requires extra care. In prin-

ciple, one approach would be to apply the scalar fusion method to all fields in Table

1 individually for each pressure level. However, we note that certain variables such as

time and co2 profile apriori are deterministic functions, and as such do not conform

to assumptions of a statistical spatial dependence model (i.e., a semi-variogram model
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such as that described in 4.1).

Our approach in this section is a generalization of a common technique called the

‘10 second average’ that is used in many flux inversions (e.g., Basu et al., 2018). There,

the approach is to simply take the average of all the fields in Table 1 in 10 seconds

intervals. Here, we generalize the approach by using a spatial statistics approach

(specifically local kriging) to compute a weighted vector of coefficients, which we

then apply to the fields in Table 1 to get the fused outputs.

The Bayesian Optimal Estimation framework, as formalized in Rodgers (2000),

is popular for inverse problems in remote sensing and it is the method of choice for

OCO-2 retrievals (Crisp et al., 2010). In this section, we will review the background

of Optimal Estimation (OE), and then discuss how our fusion approach is consistent

with the OE formulation. For ease of exposition, we will consider the inverse problem

where the forward model is linear.

3.1 Background

Consider the case where an N -dimensional radiance vector y is related to the r-

dimensional (hidden) true state x by the following data model:

y = F(x) + ε, (1)

where F( · ) is the forward model, x is the r-dimensional true state with true mean xT

and true covariance matrix ST , and ε is the N -dimensional measurement-error vector

with mean 0 and covariance matrix Sε. That is, x ∼ Nr(xT ,ST ) and ε ∼ NN(0,Sε).
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The true mean xT is defined at a set of r pressure levels p that will change from

observation to observation. Since we assume that the forward model is linear, the

general data model in (1) becomes,

y = c + Kx + ε,

where K is the Jacobian of the forward model, and c is an N -dimensional constant

vector.

Without lack of generality, we can assume that c = 0 (since c is known and hence

in principle could be subtracted from y). Our data model then becomes,

y = Kx + ε. (2)

Rodgers (2000) proposed a loss function that is the negative logarithm of the posterior

distribution of x given y, dropping constant terms,

L(x) ≡ −2logP (x|y) = (y−Kx)′ S−1ε (y−Kx)− (x− xT )′ S−1T (x− xT ). (3)

The maximum a posteriori solution (also the posterior mean in our linear forward

model case) is then given by,

x̂ = xT + GT (y−KxT ), (4)

where GT is called the gain matrix and is given by GT = (S−1T + K′S−1ε K)−1K′S−1ε .
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The uncertainty on x̂ is then given by,

ΣT ≡ Var(x̂− x) = (S−1T + K′S−1ε K)−1. (5)

The relationship in (4) is sometimes expressed as a relationship between the true

state, the retrieved state, and the prior mean state as follows,

x̂ = xT + AT (x− xT ) + εx, (6)

where AT ≡ (S−1T + K′S−1ε K)−1K′S−1ε K is a r × r matrix called the averaging

kernel. Typically, the column CO2 amount is not used in flux inversion, and a linear

combination is applied to this state vector to compute what is called the total-column

CO2 (XCO2). That is, xxco2 = h′x̂, where h is the pressure weighting vector. Note

that the averaging kernel can be interpreted as a derivative with respective to the

true state x as follows,

AT =
dx̂

dx
(7)

Finally, flux inversion also requires a quantity called column averaging kernel c,

which is given as

c = (h′AT ) � h′, (8)

where � denotes element-wise division.
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3.2 Fusion approach

Let’s consider the case of OCO-2 and GOSAT, both of which provide all the infor-

mation required above. The main difficulty is that the data fusion methodology we

develop should also produce fused quantities for all the variables above. We have

explored methodologies for fusing scalars (e.g., Nguyen et al., 2012), but some of

these variables (e.g., pressure levels, prior means, and column averaging kernel) are

r-dimensional vectors.

We take a similar approach as the 10-seconds average (Basu et al., 2018) using a

variation of local kriging based on the work of Hammerling et al. (2012). Since the

fused estimate is a linear combination of the two individual datasets, we can perform

a scalar data fusion on XCO2, and then use the linear coefficients therefrom to form

linear combination of the remaining quantities. For instance, let the XCO2 data

vector and time vector be indicated by Zi and Ti where i = 1 for OCO-2 and i = 2

for ACOS. Our fused estimate for XCO2 is ZF = a′1Z1 + a′2Z2, and the fused UTC

time would then be TF = a′1T1 + a′2T2, where a′1 and a′2 are derived from the XCO2

fusion.

This formulation is consistent with the derivation of averaging kernels above. That

is, if we consider the original space of the state vector x,

xF = a11x̂11 + a12x̂12 + . . .+ a1N1x̂1N1 + . . .

+a21x̂21 + a22x̂22 + . . .+ a2N2x̂2N2 ,
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Then the averaging kernel of this fused estimate is given as

AF =
dx̂F
dx

= a11
dx̂11

dx
+ a12

dx̂12

dx
+ . . .+ a1N1

dx̂1N1

dx
+ . . .

+ a21
dx̂21

dx
+ a22

dx̂22

dx
+ . . .+ a2N2

dx̂2N2

dx
,

= a11A11 + a12A12 + . . .+ a1N1A1N1 + . . .

+ a21A21 + a22A22 + . . .+ a2N2A2N2 . (9)

The result in (9) indicates that our generalization of the ‘10-seconds-average’

approach is consistent with the Optimal Estimation interpretation of the fields in

Table 2. This simplifies the fusion problem to that of optimally fusing the XCO2

fields. The theoretical basis for fusing XCO2 based on their geospatial dependence is

well-explored in the literature (e.g., Hammerling et al., 2012; Nguyen et al., 2012). In

the next section we will describe the motivation and implementation details for the

fusion of XCO2 from OCO-2 and ACOS.

4 Kriging equations

Here, we will take the approach of Hammerling et al. (2012) and fuse the XCO2 field

(‘/xco2’ from the OCO-2 Lite product and the ACOS product) using a form of local

kriging based on the exponential semivariogram. For ease of reference, we provide a

review of kriging below.
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Assume that we have observed CO2 data in the following form:

Z = (Z(s1), Z(s2), . . . , Z(sN))′,

Z(si) = Y (si) + ε(si),

where, for simplicity of notation, we assume that the data vector Z consist of both

the OCO-2 and ACOS data concatenated together. Under this formulation, the

measurement error process ε(si) would sample from different distributions depending

on whether si is an ACOS or OCO-2 observation. The (linear unbiased) optimal

interpolation can be written as

Ŷ (s0) = a′0Z

where a0 is a N-dimensional vector of kriging coefficients at location s.

We wish to find the vector a that minimizes,

E(Y (s)− Ŷ (s))
2

= Var(Y (s)− a′0 Z),

= Var(Y (s))− 2a′0 Cov(Z, Y (s)) + a′0 Var(Z) a0, (10)

with respect to a0, subject to the unbiasedness constraint,

1 = a′01,

Note that this vector of kriging coefficient a0 is precisely the one required for forming
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linear combinations of the fields in Table 1 (also see Section 3.2). We can solve

the minimization problem above for the optimal a0 using the method of Lagrange

multiplier, which gives the following matrix equation:



C11 C12 . . . C1N 1

C21 C22 . . . C1N 1

...
...

. . .
... 1

CN1 CN2 . . . CNN 1

1 1 . . . 1 0





a1

a2
...

aN

λ


=



C10

C20

...

CN0

1


(11)

where Cij = Cov(si, sj) , a0 = (a1, . . . , aN), and λ is the Langrange multiplier. In our

implementation of the data fusion, we prefer to use an alternative measure of spatial

dependence called semi-variogram, which is defined between any two location si and

sj as

γ(s1, s2) =
1

2
E(Z(si)− Z(sj))

2

=
1

2
Var(Z(si)− Z(sj)).

It is easy to see that the semi-variogram is related to the covariance by the following:

γ(s1, s2) =
1

2
Var(Z(si)− Z(sj))

=
1

2
(Cii + Cjj)− Cij. (12)

Substituting (12) into (13), we get the following expression in terms of the semi-
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variograms:



γ(s1, s1) γ(s1, s2) . . . γ(s1, sN) 1

γ(s2, s1) γ(s2, s2) . . . γ(s2, sN) 1

...
...

. . .
... 1

γ(sN , s1) γ(sN , s2) . . . γ(sN , sN) 1

1 1 . . . 1 0





a1

a2
...

aN

λ


=



γ(s1, s0)

γ(s2, s0)

...

γ(sN , s0)

1


(13)

The solution to the minimization problem in (10) can easily be found by solving (13)

using matrix inversion. This provides the vector of kriging coefficient a0 required by

Section 3.2. In this section we have discussed single-instrument interpolation, and

the extension to multi-instrument fusion is straightforward by combining data from

multiple instruments into a single meta-dataset (e.g., Nguyen et al., 2012).

4.1 Implementation

As described in the previous section, we use local kriging to obtain kriging coefficients

for the XCO2 field, which we then apply to all remaining fields (e.g., longitude,

latitude, pressure levels (which varies at each footprint), pressure weighting functions,

XCO2, time in UTC , prior mean, and column averaging kernel) to obtain the fused

outputs. The local neighborhood that we consider is a circular region of radius of

300 km. That is, for every fusion location s0, we search for all available ACOS and

OCO-2 data within 300 km in the same day and use that as our fusion data. The
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semi-variogram model that we use is the exponential model, which has the form

γ(si, sj) = (s− nij)
(
1− e−|si−sj |/(r)

)
+ I(si 6= sj)nij (14)

where I( si 6= sj) is an indicator function that returns 1 if si 6= sj, and 0 otherwise;

nij = (β(si) + β(sj)) /2, and that

β(si) =

 nA if si is an ACOS observation

nO otherwise
(15)

where nA and nO are the ACOS and OCO-2 nugget terms; and r and s are the sill

and range, respectively. Note here that we are employing an exponential variogram

function, so the r term here does not fit the typical understanding of the range as the

distance at which the variogram becomes level. However, conventional wisdom indi-

cate that we can multiply the term r by 3 to get an approximation of the distance at

which observations are considered independent. Since both instruments are observing

total column dioxide (XCO2), we assume that the range and sill terms are identical for

both instruments. Current literature indicate that OCO-2 and GOSAT have different

instrument bias and measurement error (e.g., Wunch et al., 2017; Inoue et al., 2013).

In our implementation we assume that the instrument-dependent bias has been re-

moved by the bias-correction process (see OCO-2 and ACOS Data User Guide). The

existing literature indicates that GOSAT typically has higher measurement-error vari-

ability, and hence here we model that by assuming that the nugget term for ACOS

is 1.5 times that of OCO-2. That is, we assume that nA = 1.5nO.
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Figure 1: Left: a scatterplot of XCO2 versus time of year for 2016. Right: a scatter-
plot of the time-detrended residuals versus latitude. The red lines indicate a smoothed
fit using locally-weight regression with span = 10%.

Solving for the weighting coefficients in (13) for any arbitrary fusion location re-

quires the variogram parameters {n, r, nO}. Here, we opt to construct a ‘climatology’

of {n, r, nO} as function latitude and longitude. To do this, we gathered all XCO2

data from the years 2015-2017. Simple scatterplots of the XCO2 against time of year

and latitude indicate that there are time and latitude-dependent non-linear trends

that need to be removed before the variogram estimation process. Therefore, we

removed these trends using a step-wise process where we first fit a locally-weighted

regression line (lowess; Cleveland and Devlin, 1988) against time, and then removing

the smoothed value from every observed value. This forms a set of time-detrended

residuals, on which we repeat the procedure to obtain another lowess fit versus lati-

tude. Once again, this latitude-dependent trend is removed to produce a detrended

dataset for variogram estimation. The scatterplots and lowess fits against time of

year and latitude are shown in Figure 1.
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Having detrended the XCO2 data, for each grid point we gather all data within

400 km and computed the variogram parameters using weighted least-squares (for

details, see Cressie, 1985). In general, the global climatology tends to have a nugget

within the range [.5 and 1], the effective range (defined as 3r) within the range [100

km, 300 km], and the sill between [.5, 4].

4.2 Workflow

Having constructed the variogram parameter climatology, the workflow for generating

the fused product is as below:

1. For every day, divide the globe into a .5◦ × .5◦ output grid

2. Filter the OCO-2 and ACOS data as described in Section 2.1 and subset them

by one of four modes in Table 1.

3. For every fusion location s0, search for all ACOS and OCO-2 data within the

same day and within 300 km radius.

• If there are less than 5 retrieved data points from Step 3, proceed to the

next fusion location.

4. Set the variogram parameters from the climatology (Section 4.1) using clima-

tology in Section 4.1.

5. Compute the optimal fusion coefficient vector a0 by solving (13).

6. Compute linear combinations of the fields in Table 2 using coefficient vector a0.
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7. Repeat Step 2-6 for other output modes.

4.3 Inflation factors

Flux inversion studies often make the assumption that the input data (here, either the

Level OCO-2 retrievals, 10-seconds averages, or our fusion product) are statistically

independent of one another. One natural consequence of this assumption is that the

‘information content’ of a product depends on the size of the dataset. We currently

are studying various choices of ‘inflation factors’, which would allow flux modelers

to normalize the information content to make it more comparable across different

products. In this version, we provide a preliminary metric based on the ratio of the

variance of the mean estimates.

Consider the flux inversion cost function, which is given as follow:

Ls = (z−Hs)TR−1(z−Hs) + (s− sp)
TQ−1(s− sp)

where z is the retrieval observations, H is the transport operator, s is the flux, R is

the covariance matrix for z, and sp and Q are the prior mean vector and the prior

covariance matrix for the flux, respectively. R is typically non-diagonal, but flux

inversion often uses only the diagonal components of R (due to the independence

assumption). We denote the diagonal component of R as RD. The arithmetic mean

of z is given by

m = wz,

where w = (1, 1, . . . , 1)/N , and N is the number of observations in z. The variance
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of this estimate is given by

σ2 = wRw′,

Here, we estimated the inflation factor as the ratio of the variance of the mean

estimate (with spatial dependence) to that arising from the independence assumption.

The inflation factor is given by

c =
σ2

σ2
D

=
wRw′

wRDw′
=

∑
i

∑
j Rij∑

i

∑
j Rij

D

,

where Rij denotes the element in the i-th row and j-th column of the matrix R. In our

data product, these inflation factors are calculated separately for land and ocean fused

estimates, then their values are given in ‘land inflation factor’ and ‘ocean inflation factor.’
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